Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 358.454
Filtrar
1.
J Toxicol Sci ; 49(5): 219-230, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38692909

RESUMEN

Quantitative structure permeation relationship (QSPR) models have gained prominence in recent years owing to their capacity to elucidate the influence of physicochemical properties on the dermal absorption of chemicals. These models facilitate the prediction of permeation coefficient (Kp) values, indicating the skin permeability of a chemical under infinite dose conditions. Conversely, obtaining dermal absorption rates (DAs) under finite dose conditions, which are crucial for skin product safety evaluation, remains a challenge when relying solely on Kp predictions from QSPR models. One proposed resolution involves using Kroes' methodology, categorizing DAs based on Kp values; however, refinement becomes necessary owing to discreteness in the obtained values. We previously developed a mathematical model using Kp values obtained from in vitro dermal absorption tests to predict DAs. The present study introduces a new methodology, Integrating Mathematical Approaches (IMAS), which combines QSPR models and our mathematical model to predict DAs for risk assessments without conducting in vitro dermal absorption tests. Regarding 40 chemicals (76.1 ≤ MW ≤ 220; -1.4 ≤ Log Ko/w ≤ 3.1), IMAS showed that 65.0% (26/40) predictions of DA values were accurate to within twofold of the observed values in finite dose experiments. Compared to Kroes' methodology, IMAS notably mitigated overestimation, particularly for hydrophilic chemicals with water solubility exceeding 57.0 mg/cm3. These findings highlight the value of IMAS as a tool for skin product risk assessments, particularly for hydrophilic compounds.


Asunto(s)
Permeabilidad , Relación Estructura-Actividad Cuantitativa , Absorción Cutánea , Medición de Riesgo , Piel/metabolismo , Humanos , Modelos Teóricos , Solubilidad , Interacciones Hidrofóbicas e Hidrofílicas , Animales , Modelos Biológicos
2.
Ecol Lett ; 27(5): e14429, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38690608

RESUMEN

Coral bleaching, the stress-induced breakdown of coral-algal symbiosis, threatens reefs globally. Paradoxically, despite adverse fitness effects, corals bleach annually, even outside of abnormal temperatures. This generally occurs shortly after the once-per-year mass coral spawning. Here, we propose a hypothesis linking annual coral bleaching and the transmission of symbionts to the next generation of coral hosts. We developed a dynamic model with two symbiont growth strategies, and found that high sexual recruitment and low adult coral survivorship and growth favour bleaching susceptibility, while the reverse promotes bleaching resilience. Otherwise, unexplained trends in the Indo-Pacific align with our hypothesis, where reefs and coral taxa exhibiting higher recruitment are more bleaching susceptible. The results from our model caution against interpreting potential shifts towards more bleaching-resistant symbionts as evidence of climate adaptation-we predict such a shift could also occur in declining systems experiencing low recruitment rates, a common scenario on today's reefs.


Asunto(s)
Antozoos , Blanqueamiento de los Corales , Arrecifes de Coral , Simbiosis , Animales , Antozoos/fisiología , Antozoos/microbiología , Modelos Biológicos
3.
NPJ Syst Biol Appl ; 10(1): 49, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714708

RESUMEN

Morphogenetic programs coordinate cell signaling and mechanical interactions to shape organs. In systems and synthetic biology, a key challenge is determining optimal cellular interactions for predicting organ shape, size, and function. Physics-based models defining the subcellular force distribution facilitate this, but it is challenging to calibrate parameters in these models from data. To solve this inverse problem, we created a Bayesian optimization framework to determine the optimal cellular force distribution such that the predicted organ shapes match the experimentally observed organ shapes. This integrative framework employs Gaussian Process Regression, a non-parametric kernel-based probabilistic machine learning modeling paradigm, to learn the mapping functions relating to the morphogenetic programs that maintain the final organ shape. We calibrated and tested the method on Drosophila wing imaginal discs to study mechanisms that regulate epithelial processes ranging from development to cancer. The parameter estimation framework successfully infers the underlying changes in core parameters needed to match simulation data with imaging data of wing discs perturbed with collagenase. The computational pipeline identifies distinct parameter sets mimicking wild-type shapes. It enables a global sensitivity analysis to support the regulation of actomyosin contractility and basal ECM stiffness to generate and maintain the curved shape of the wing imaginal disc. The optimization framework, combined with experimental imaging, identified that Piezo, a mechanosensitive ion channel, impacts fold formation by regulating the apical-basal balance of actomyosin contractility and elasticity of ECM. This workflow is extensible toward reverse-engineering morphogenesis across organ systems and for real-time control of complex multicellular systems.


Asunto(s)
Teorema de Bayes , Morfogénesis , Alas de Animales , Animales , Modelos Biológicos , Drosophila melanogaster , Discos Imaginales , Simulación por Computador , Drosophila
4.
PLoS One ; 19(5): e0303137, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38722911

RESUMEN

The Asian tiger mosquito, Aedes albopictus, is a significant public health concern owing to its expanding habitat and vector competence. Disease outbreaks attributed to this species have been reported in areas under its invasion, and its northward expansion in Japan has caused concern because of the potential for dengue virus infection in newly populated areas. Accurate prediction of Ae. albopictus distribution is crucial to prevent the spread of the disease. However, limited studies have focused on the prediction of Ae. albopictus distribution in Japan. Herein, we used the random forest model, a machine learning approach, to predict the current and potential future habitat ranges of Ae. albopictus in Japan. The model revealed that these mosquitoes prefer urban areas over forests in Japan on the current map. Under predictions for the future, the species will expand its range to the surrounding areas and eventually reach many areas of northeastern Kanto, Tohoku District, and Hokkaido, with a few variations in different scenarios. However, the affected human population is predicted to decrease owing to the declining birth rate. Anthropogenic and climatic factors contribute to range expansion, and urban size and population have profound impacts. This prediction map can guide responses to the introduction of this species in new areas, advance the spatial knowledge of diseases vectored by it, and mitigate the possible disease burden. To our knowledge, this is the first distribution-modelling prediction for Ae. albopictus with a focus on Japan.


Asunto(s)
Aedes , Mosquitos Vectores , Animales , Aedes/virología , Aedes/fisiología , Japón , Mosquitos Vectores/virología , Ecosistema , Humanos , Distribución Animal , Dengue/transmisión , Dengue/epidemiología , Aprendizaje Automático , Modelos Biológicos
5.
PLoS One ; 19(5): e0302874, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38722910

RESUMEN

Lyme disease is the most common wildlife-to-human transmitted disease reported in North America. The study of this disease requires an understanding of the ecology of the complex communities of ticks and host species involved in harboring and transmitting this disease. Much of the ecology of this system is well understood, such as the life cycle of ticks, and how hosts are able to support tick populations and serve as disease reservoirs, but there is much to be explored about how the population dynamics of different host species and communities impact disease risk to humans. In this study, we construct a stage-structured, empirically-informed model with host dynamics to investigate how host population dynamics can affect disease risk to humans. The model describes a tick population and a simplified community of three host species, where primary nymph host populations are made to fluctuate on an annual basis, as commonly observed in host populations. We tested the model under different environmental conditions to examine the effect of environment on the interactions of host dynamics and disease risk. Results show that allowing for host dynamics in the model reduces mean nymphal infection prevalence and increases the maximum annual prevalence of nymphal infection and the density of infected nymphs. Effects of host dynamics on disease measures of nymphal infection prevalence were nonlinear and patterns in the effect of dynamics on amplitude in nymphal infection prevalence varied across environmental conditions. These results highlight the importance of further study of the effect of community dynamics on disease risk. This will involve the construction of further theoretical models and collection of robust field data to inform these models. With a more complete understanding of disease dynamics we can begin to better determine how to predict and manage disease risk using these models.


Asunto(s)
Enfermedad de Lyme , Dinámica Poblacional , Enfermedad de Lyme/epidemiología , Animales , Humanos , Ixodes/microbiología , Ixodes/fisiología , Modelos Teóricos , Garrapatas/microbiología , Garrapatas/fisiología , Modelos Biológicos , Borrelia burgdorferi/fisiología , Borrelia burgdorferi/patogenicidad , Interacciones Huésped-Parásitos , Ninfa
6.
BMC Vet Res ; 20(1): 188, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730373

RESUMEN

Femoral fractures are often considered lethal for adult horses because femur osteosynthesis is still a surgical challenge. For equine femur osteosynthesis, primary stability is essential, but the detailed physiological forces occurring in the hindlimb are largely unknown. The objective of this study was to create a numerical testing environment to evaluate equine femur osteosynthesis based on physiological conditions. The study was designed as a finite element analysis (FEA) of the femur using a musculoskeletal model of the loading situation in stance. Relevant forces were determined in the musculoskeletal model via optimization. The treatment of four different fracture types with an intramedullary nail was investigated in FEA with loading conditions derived from the model. The analyzed diaphyseal fracture types were a transverse (TR) fracture, two oblique fractures in different orientations (OB-ML: medial-lateral and OB-AP: anterior-posterior) and a "gap" fracture (GAP) without contact between the fragments. For the native femur, the most relevant areas of increased stress were located distally to the femoral head and proximally to the caudal side of the condyles. For all fracture types, the highest stresses in the implant material were present in the fracture-adjacent screws. Maximum compressive (-348 MPa) and tensile stress (197 MPa) were found for the GAP fracture, but material strength was not exceeded. The mathematical model was able to predict a load distribution in the femur of the standing horse and was used to assess the performance of internal fixation devices via FEA. The analyzed intramedullary nail and screws showed sufficient stability for all fracture types.


Asunto(s)
Fracturas del Fémur , Fijación Interna de Fracturas , Miembro Posterior , Animales , Caballos/fisiología , Fenómenos Biomecánicos , Fracturas del Fémur/veterinaria , Fracturas del Fémur/cirugía , Fijación Interna de Fracturas/veterinaria , Fijación Interna de Fracturas/métodos , Miembro Posterior/cirugía , Análisis de Elementos Finitos , Fémur/cirugía , Modelos Biológicos , Soporte de Peso , Fijación Intramedular de Fracturas/veterinaria , Fijación Intramedular de Fracturas/instrumentación
7.
Proc Natl Acad Sci U S A ; 121(20): e2322321121, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38728226

RESUMEN

Multispecies bacterial populations often inhabit confined and densely packed environments where spatial competition determines the ecological diversity of the community. However, the role of mechanical interactions in shaping the ecology is still poorly understood. Here, we study a model system consisting of two populations of nonmotile Escherichia coli bacteria competing within open, monolayer microchannels. The competitive dynamics is observed to be biphasic: After seeding, either one strain rapidly fixates or both strains orient into spatially stratified, stable communities. We find that mechanical interactions with other cells and local spatial constraints influence the resulting community ecology in unexpected ways, severely limiting the overall diversity of the communities while simultaneously allowing for the establishment of stable, heterogeneous populations of bacteria displaying disparate growth rates. Surprisingly, the populations have a high probability of coexisting even when one strain has a significant growth advantage. A more coccus morphology is shown to provide a selective advantage, but agent-based simulations indicate this is due to hydrodynamic and adhesion effects within the microchannel and not from breaking of the nematic ordering. Our observations are qualitatively reproduced by a simple Pólya urn model, which suggests the generality of our findings for confined population dynamics and highlights the importance of early colonization conditions on the resulting diversity and ecology of bacterial communities. These results provide fundamental insights into the determinants of community diversity in dense confined ecosystems where spatial exclusion is central to competition as in organized biofilms or intestinal crypts.


Asunto(s)
Escherichia coli , Escherichia coli/fisiología , Modelos Biológicos , Biodiversidad , Ecosistema
8.
Food Res Int ; 186: 114317, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38729709

RESUMEN

Lipids play a pivotal role in the nutrition of preterm infants, acting as a primary energy source. Due to their underdeveloped gastrointestinal systems, lipid malabsorption is common, leading to insufficient energy intake and slowed growth. Therefore, it is critical to explore the reasons behind the low lipid absorption rate in formulas for preterm infants. This study utilized a simulated in intro gastrointestinal digestion model to assess the differences in lipid digestion between preterm human milk and various infant formulas. Results showed that the fatty acid release rates for formulas IF3, IF5, and IF7 were 58.90 %, 56.58 %, and 66.71 %, respectively, lower than human milk's 72.31 %. The primary free fatty acids (FFA) and 2-monoacylglycerol (2-MAG) released during digestion were C14:0, C16:0, C18:0, C18:1n-9, and C18:2n-6, in both human milk and formulas. Notably, the higher release of C16:0 in formulas may disrupt fatty acid balance, impacting lipid absorption. Further investigations are necessary to elucidate lipid absorption differences, which will inform the optimization of lipid content in preterm infant formulas.


Asunto(s)
Digestión , Fórmulas Infantiles , Recien Nacido Prematuro , Leche Humana , Leche Humana/química , Leche Humana/metabolismo , Humanos , Fórmulas Infantiles/química , Recién Nacido , Ácidos Grasos/análisis , Ácidos Grasos/metabolismo , Lípidos/análisis , Ácidos Grasos no Esterificados/análisis , Ácidos Grasos no Esterificados/metabolismo , Metabolismo de los Lípidos , Tracto Gastrointestinal/metabolismo , Modelos Biológicos , Monoglicéridos/metabolismo , Monoglicéridos/análisis , Grasas de la Dieta/metabolismo , Grasas de la Dieta/análisis
9.
Food Res Int ; 186: 114314, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38729708

RESUMEN

Variability in microbial growth is a keystone of modern Quantitative Microbiological Risk Assessment (QMRA). However, there are still significant knowledge gaps on how to model variability, with the most common assumption being that variability is constant. This is implemented by an error term (with constant variance) added on top of the secondary growth model (for the square root of the growth rate). However, this may go against microbial ecology principles, where differences in growth fitness among bacterial strains would be more prominent in the vicinity of the growth limits than at optimal growth conditions. This study coins the term "secondary models for variability", evaluating whether they should be considered in QMRA instead of the constant strain variability hypothesis. For this, 21 strains of Listeria innocua were used as case study, estimating their growth rate by the two-fold dilution method at pH between 5 and 10. Estimates of between-strain variability and experimental uncertainty were obtained for each pH using mixed-effects models, showing the lowest variability at optimal growth conditions, increasing towards the growth limits. Nonetheless, the experimental uncertainty also increased towards the extremes, evidencing the need to analyze both sources of variance independently. A secondary model was thus proposed, relating strain variability and pH conditions. Although the modelling approach certainly has some limitations that would need further experimental validation, it is an important step towards improving the description of variability in QMRA, being the first model of this type in the field.


Asunto(s)
Microbiología de Alimentos , Listeria , Listeria/crecimiento & desarrollo , Listeria/clasificación , Concentración de Iones de Hidrógeno , Modelos Biológicos , Recuento de Colonia Microbiana , Medición de Riesgo
10.
Sci Adv ; 10(18): eadn0172, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38691595

RESUMEN

Collective cell dynamics is essential for tissue morphogenesis and various biological functions. However, it remains incompletely understood how mechanical forces and chemical signaling are integrated to direct collective cell behaviors underlying tissue morphogenesis. Here, we propose a three-dimensional (3D) mechanochemical theory accounting for biochemical reaction-diffusion and cellular mechanotransduction to investigate the dynamics of multicellular lumens. We show that the interplay between biochemical signaling and mechanics can trigger either pitchfork or Hopf bifurcation to induce diverse static mechanochemical patterns or generate oscillations with multiple modes both involving marked mechanical deformations in lumens. We uncover the crucial role of mechanochemical feedback in emerging morphodynamics and identify the evolution and morphogenetic functions of hierarchical topological defects including cell-level hexatic defects and tissue-level orientational defects. Our theory captures the common mechanochemical traits of collective dynamics observed in experiments and could provide a mechanistic context for understanding morphological symmetry breaking in 3D lumen-like tissues.


Asunto(s)
Mecanotransducción Celular , Modelos Biológicos , Morfogénesis , Fenómenos Biomecánicos , Animales
11.
Ecol Lett ; 27(5): e14432, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38698727

RESUMEN

Pairwise interactions between species can be modified by other community members, leading to emergent dynamics contingent on community composition. Despite the prevalence of such higher-order interactions, little is known about how they are linked to the timing and order of species' arrival. We generate population dynamics from a mechanistic plant-soil feedback model, then apply a general theoretical framework to show that the modification of a pairwise interaction by a third plant depends on its germination phenology. These time-dependent interaction modifications emerge from concurrent changes in plant and microbe populations and are strengthened by higher overlap between plants' associated microbiomes. The interaction between this overlap and the specificity of microbiomes further determines plant coexistence. Our framework is widely applicable to mechanisms in other systems from which similar time-dependent interaction modifications can emerge, highlighting the need to integrate temporal shifts of species interactions to predict the emergent dynamics of natural communities.


Asunto(s)
Microbiota , Modelos Biológicos , Microbiología del Suelo , Dinámica Poblacional , Plantas/microbiología , Suelo/química , Factores de Tiempo , Germinación
12.
Nat Commun ; 15(1): 3494, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38693163

RESUMEN

H9N2 avian influenza viruses (AIVs) are a major concern for the poultry sector and human health in countries where this subtype is endemic. By fitting a model simulating H9N2 AIV transmission to data from a field experiment, we characterise the epidemiology of the virus in a live bird market in Bangladesh. Many supplied birds arrive already exposed to H9N2 AIVs, resulting in many broiler chickens entering the market as infected, and many indigenous backyard chickens entering with pre-existing immunity. Most susceptible chickens become infected within one day spent at the market, owing to high levels of viral transmission within market and short latent periods, as brief as 5.3 hours. Although H9N2 AIV transmission can be substantially reduced under moderate levels of cleaning and disinfection, effective risk mitigation also requires a range of additional interventions targeting markets and other nodes along the poultry production and distribution network.


Asunto(s)
Pollos , Subtipo H9N2 del Virus de la Influenza A , Gripe Aviar , Animales , Subtipo H9N2 del Virus de la Influenza A/aislamiento & purificación , Subtipo H9N2 del Virus de la Influenza A/inmunología , Gripe Aviar/transmisión , Gripe Aviar/epidemiología , Gripe Aviar/virología , Pollos/virología , Bangladesh/epidemiología , Enfermedades de las Aves de Corral/transmisión , Enfermedades de las Aves de Corral/virología , Enfermedades de las Aves de Corral/epidemiología , Modelos Biológicos
13.
Fluids Barriers CNS ; 21(1): 38, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38693577

RESUMEN

BACKGROUND: Blood-brain barrier (BBB) disruption is a central feature of cerebral malaria (CM), a severe complication of Plasmodium falciparum (Pf) infections. In CM, sequestration of Pf-infected red blood cells (Pf-iRBCs) to brain endothelial cells combined with inflammation, hemolysis, microvasculature obstruction and endothelial dysfunction mediates BBB disruption, resulting in severe neurologic symptoms including coma and seizures, potentially leading to death or long-term sequelae. In vitro models have advanced our knowledge of CM-mediated BBB disruption, but their physiological relevance remains uncertain. Using human induced pluripotent stem cell-derived brain microvascular endothelial cells (hiPSC-BMECs), we aimed to develop a novel in vitro model of the BBB in CM, exhibiting enhanced barrier properties. METHODS: hiPSC-BMECs were co-cultured with HB3var03 strain Pf-iRBCs up to 9 h. Barrier integrity was measured using transendothelial electrical resistance (TEER) and sodium fluorescein permeability assays. Localization and expression of tight junction (TJ) proteins (occludin, zonula occludens-1, claudin-5), cellular adhesion molecules (ICAM-1, VCAM-1), and endothelial surface markers (EPCR) were determined using immunofluorescence imaging (IF) and western blotting (WB). Expression of angiogenic and cell stress markers were measured using multiplex proteome profiler arrays. RESULTS: After 6-h of co-culture with Pf-iRBCs, hiPSC-BMECs showed reduced TEER and increased sodium fluorescein permeability compared to co-culture with uninfected RBCs, indicative of a leaky barrier. We observed disruptions in localization of occludin, zonula occludens-1, and claudin-5 by IF, but no change in protein expression by WB in Pf-iRBC co-cultures. Expression of ICAM-1 and VCAM-1 but not EPCR was elevated in hiPSC-BMECs with Pf-iRBC co-culture compared to uninfected RBC co-culture. In addition, there was an increase in expression of angiogenin, platelet factor-4, and phospho-heat shock protein-27 in the Pf-iRBCs co-culture compared to uninfected RBC co-culture. CONCLUSION: These findings demonstrate the validity of our hiPSC-BMECs based model of the BBB, that displays enhanced barrier integrity and appropriate TJ protein localization. In the hiPSC-BMEC co-culture with Pf-iRBCs, reduced TEER, increased paracellular permeability, changes in TJ protein localization, increase in expression of adhesion molecules, and markers of angiogenesis and cellular stress all point towards a novel model with enhanced barrier properties, suitable for investigating pathogenic mechanisms underlying BBB disruption in CM.


Asunto(s)
Barrera Hematoencefálica , Células Madre Pluripotentes Inducidas , Malaria Cerebral , Barrera Hematoencefálica/metabolismo , Humanos , Malaria Cerebral/metabolismo , Células Endoteliales/metabolismo , Células Cultivadas , Técnicas de Cocultivo , Modelos Biológicos
14.
Methods Mol Biol ; 2800: 231-244, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38709488

RESUMEN

In this chapter, we describe protocols for using the CellOrganizer software on the Jupyter Notebook platform to analyze and model cell and organelle shape and spatial arrangement. CellOrganizer is an open-source system for using microscope images to learn statistical models of the structure of cell components and how those components are organized relative to each other. Such models capture the statistical variation in the organization of cellular components by jointly modeling the distributions of their number, shape, and spatial distributions. These models can be created for different cell types or conditions and compared to reflect differences in their spatial organizations. The models are also generative, in that they can be used to synthesize new cell instances reflecting what a model learned and to provide well-structured cell geometries that can be used for biochemical simulations.


Asunto(s)
Programas Informáticos , Procesamiento de Imagen Asistido por Computador/métodos , Modelos Biológicos , Humanos , Simulación por Computador , Orgánulos/metabolismo
15.
Bull Math Biol ; 86(6): 70, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38717656

RESUMEN

Practical limitations of quality and quantity of data can limit the precision of parameter identification in mathematical models. Model-based experimental design approaches have been developed to minimise parameter uncertainty, but the majority of these approaches have relied on first-order approximations of model sensitivity at a local point in parameter space. Practical identifiability approaches such as profile-likelihood have shown potential for quantifying parameter uncertainty beyond linear approximations. This research presents a genetic algorithm approach to optimise sample timing across various parameterisations of a demonstrative PK-PD model with the goal of aiding experimental design. The optimisation relies on a chosen metric of parameter uncertainty that is based on the profile-likelihood method. Additionally, the approach considers cases where multiple parameter scenarios may require simultaneous optimisation. The genetic algorithm approach was able to locate near-optimal sampling protocols for a wide range of sample number (n = 3-20), and it reduced the parameter variance metric by 33-37% on average. The profile-likelihood metric also correlated well with an existing Monte Carlo-based metric (with a worst-case r > 0.89), while reducing computational cost by an order of magnitude. The combination of the new profile-likelihood metric and the genetic algorithm demonstrate the feasibility of considering the nonlinear nature of models in optimal experimental design at a reasonable computational cost. The outputs of such a process could allow for experimenters to either improve parameter certainty given a fixed number of samples, or reduce sample quantity while retaining the same level of parameter certainty.


Asunto(s)
Algoritmos , Simulación por Computador , Conceptos Matemáticos , Modelos Biológicos , Método de Montecarlo , Funciones de Verosimilitud , Humanos , Relación Dosis-Respuesta a Droga , Proyectos de Investigación/estadística & datos numéricos , Modelos Genéticos , Incertidumbre
16.
Nat Commun ; 15(1): 3851, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719803

RESUMEN

Current guidelines advise against primaquine treatment for breastfeeding mothers to avoid the potential for haemolysis in infants with G6PD deficiency. To predict the haemolytic risk, the amount of drug received from the breast milk and the resulting infant drug exposure need to be characterised. Here, we develop a pharmacokinetic model to describe the drug concentrations in breastfeeding women using venous, capillary, and breast milk data. A mother-to-infant model is developed to mimic the infant feeding pattern and used to predict their drug exposures. Primaquine and carboxyprimaquine exposures in infants are <1% of the exposure in mothers. Therefore, even in infants with the most severe G6PD deficiency variants, it is highly unlikely that standard doses of primaquine (0.25-1 mg base/kg once daily given to the mother for 1-14 days) would cause significant haemolysis. After the neonatal period, primaquine should not be restricted for breastfeeding women (Clinical Trials Registration: NCT01780753).


Asunto(s)
Antimaláricos , Lactancia Materna , Lactancia , Leche Humana , Primaquina , Humanos , Femenino , Primaquina/farmacocinética , Primaquina/administración & dosificación , Antimaláricos/farmacocinética , Antimaláricos/administración & dosificación , Lactante , Leche Humana/química , Leche Humana/metabolismo , Adulto , Recién Nacido , Hemólisis/efectos de los fármacos , Modelos Biológicos
17.
Eur Phys J E Soft Matter ; 47(5): 30, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38720027

RESUMEN

The aggregation or clustering of proteins and other macromolecules plays an important role in the formation of large-scale molecular assemblies within cell membranes. Examples of such assemblies include lipid rafts, and postsynaptic domains (PSDs) at excitatory and inhibitory synapses in neurons. PSDs are rich in scaffolding proteins that can transiently trap transmembrane neurotransmitter receptors, thus localizing them at specific spatial positions. Hence, PSDs play a key role in determining the strength of synaptic connections and their regulation during learning and memory. Recently, a two-dimensional (2D) diffusion-mediated aggregation model of PSD formation has been developed in which the spatial locations of the clusters are determined by a set of fixed anchoring sites. The system is kept out of equilibrium by the recycling of particles between the cell membrane and interior. This results in a stationary distribution consisting of multiple clusters, whose average size can be determined using an effective mean-field description of the particle concentration around each anchored cluster. In this paper, we derive corrections to the mean-field approximation by applying the theory of diffusion in singularly perturbed domains. The latter is a powerful analytical method for solving two-dimensional (2D) and three-dimensional (3D) diffusion problems in domains where small holes or perforations have been removed from the interior. Applications range from modeling intracellular diffusion, where interior holes could represent subcellular structures such as organelles or biological condensates, to tracking the spread of chemical pollutants or heat from localized sources. In this paper, we take the bounded domain to be the cell membrane and the holes to represent anchored clusters. The analysis proceeds by partitioning the membrane into a set of inner regions around each cluster, and an outer region where mean-field interactions occur. Asymptotically matching the inner and outer stationary solutions generates an asymptotic expansion of the particle concentration, which includes higher-order corrections to mean-field theory that depend on the positions of the clusters and the boundary of the domain. Motivated by a recent study of light-activated protein oligomerization in cells, we also develop the analogous theory for cluster formation in a three-dimensional (3D) domain. The details of the asymptotic analysis differ from the 2D case due to the contrasting singularity structure of 2D and 3D Green's functions.


Asunto(s)
Membrana Celular , Difusión , Membrana Celular/metabolismo , Membrana Celular/química , Microdominios de Membrana/química , Microdominios de Membrana/metabolismo , Modelos Biológicos
18.
Sci Rep ; 14(1): 10655, 2024 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724688

RESUMEN

Worms create complex paths when moving through sediment to feed. This research applies computer simulation models to provide a unique approach to visualise and quantify the process by which complex worm paths can emerge from simple local movement decisions. A grid environment is proposed in which worms can move with choice of up to 8 directions at each step. This uses a square grid with diagonal paths which has not been investigated before and the resulting number of complex paths is increased compared to triangular grids. Results identify many novel worm paths. Some of the resulting paths are symmetrical, others produce repetitive looping paths, others return to the origin. Interesting worm paths are identified with chaotic movement. Some include oscillating between chaotic and ordered movement for which the outcome is still unknown after millions of steps. A conclusion that may be extrapolated to other creatures is that local movement decisions of a species substantially determine the overall global search strategy that emerges.


Asunto(s)
Simulación por Computador , Conducta Alimentaria , Animales , Conducta Alimentaria/fisiología , Modelos Biológicos , Movimiento
19.
Cells ; 13(9)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38727311

RESUMEN

Glaucoma is a heterogeneous group of optic neuropathies characterized by a progressive degeneration of the retinal ganglion cells (RGCs), leading to irreversible vision loss. Nowadays, the traditional therapeutic approach to glaucoma consists of lowering the intraocular pressure (IOP), which does not address the neurodegenerative features of the disease. Besides animal models of glaucoma, there is a considerable need for in vitro experimental models to propose new therapeutic strategies for this ocular disease. In this study, we elucidated the pathological mechanisms leading to neuroretinal R28 cell death after exposure to glutamate and hydrogen peroxide (H2O2) in order to develop new therapeutic approaches for oxidative stress-induced retinal diseases, including glaucoma. We were able to show that glutamate and H2O2 can induce a decrease in R28 cell viability in a concentration-dependent manner. A cell viability of about 42% was found after exposure to 3 mM of glutamate and about 56% after exposure to 100 µM of H2O2 (n = 4). Label-free quantitative mass spectrometry analysis revealed differential alterations of 193 and 311 proteins in R28 cells exposed to 3 mM of glutamate and 100 µM of H2O2, respectively (FDR < 1%; p < 0.05). Bioinformatics analysis indicated that the protein changes were associated with the dysregulation of signaling pathways, which was similar to those observed in glaucoma. Thus, the proteomic alteration induced by glutamate was associated with the inhibition of the PI3K/AKT signaling pathway. On the other hand, H2O2-induced toxicity in R28 cells was linked to the activation of apoptosis signaling and the inhibition of the mTOR and ERK/MAPK signaling pathways. Furthermore, the data show a similarity in the inhibition of the EIF2 and AMPK signaling pathways and the activation of the sumoylation and WNT/ß-catenin signaling pathways in both groups. Our findings suggest that the exposure of R28 cells to glutamate and H2O2 could induce glaucoma-like neurodegenerative features and potentially provide a suitable tool for the development of new therapeutic strategies for retinal diseases.


Asunto(s)
Glaucoma , Ácido Glutámico , Peróxido de Hidrógeno , Estrés Oxidativo , Glaucoma/metabolismo , Glaucoma/patología , Glaucoma/tratamiento farmacológico , Estrés Oxidativo/efectos de los fármacos , Animales , Peróxido de Hidrógeno/farmacología , Ácido Glutámico/metabolismo , Supervivencia Celular/efectos de los fármacos , Ratas , Línea Celular , Células Ganglionares de la Retina/metabolismo , Células Ganglionares de la Retina/efectos de los fármacos , Células Ganglionares de la Retina/patología , Transducción de Señal/efectos de los fármacos , Modelos Biológicos , Humanos
20.
Sci Adv ; 10(19): eadn3510, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38728407

RESUMEN

Cardiovascular disease (CVD), the world's leading cause of death, exhibits notable epidemiological, clinical, and pathophysiological differences between sexes. Many such differences can be linked back to cardiovascular sexual dimorphism, yet sex-specific in vitro models are still not the norm. A lack of sex reporting and apparent male bias raises the question of whether in vitro CVD models faithfully recapitulate the biology of intended treatment recipients. To ensure equitable treatment for the overlooked female patient population, sex as a biological variable (SABV) inclusion must become commonplace in CVD preclinical research. Here, we discuss the role of sex in CVD and underlying cardiovascular (patho)physiology. We review shortcomings in current SABV practices, describe the relevance of sex, and highlight emerging strategies for SABV inclusion in three major in vitro model types: primary cell, stem cell, and three-dimensional models. Last, we identify key barriers to inclusive design and suggest techniques for overcoming them.


Asunto(s)
Enfermedades Cardiovasculares , Caracteres Sexuales , Humanos , Enfermedades Cardiovasculares/patología , Femenino , Masculino , Animales , Factores Sexuales , Modelos Biológicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA